

Cowa COMPACT Cell 58

The buffer storage for your heating system

Our buffer storage is specially designed to meet the requirements of modern heat pump systems. Thanks to the intelligent combination of high storage efficiency and space-saving design, it optimizes heat use and ensures a reliable, sustainable energy supply.

Product Features:

- ✓ Space-saving design Only 600 mm x 340 mm x 1400 mm
- √ High storage capacity 13 kWh of thermal energy
- ✓ Energy efficient Minimal heat loss, high efficiency
- ✓ Modular & expandable easy integration into existing systems
- ✓ Optimized for heat pumps Perfect match with modern heating systems

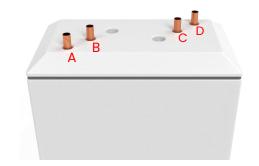
Compact gas replacement

Buffer storage for heat pumps

Integration into district heating systems

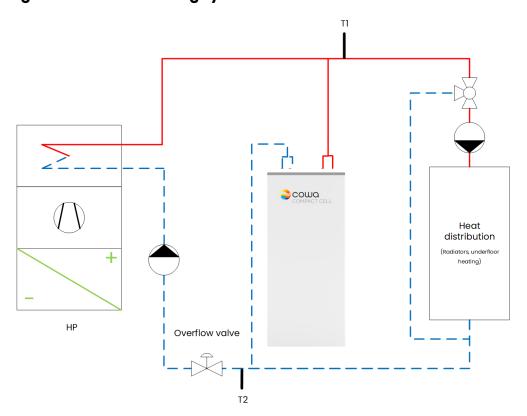
Peak load management

Self-consumption optimization


Key Features:

- Stratification-free
- Temperature stability
- Physical separation of primary & secondary circuit
- Integrated high-performance dual heat exchanger
- Cubic design for optimal space utilization

COMPACT Cell 58		
Height	1400	mm
Width	600	mm
Depth	340	mm
Weight	250	kg
Storage capacity ¹	13	kWh
Storage capacity per m³	75	kWh/m³
Storage equivalent with phase change	380	L
Storage equivalent without phase change	110	L
Discharge temperature	55	°C
Energy label ²	В	
Possible water flow rate	25	L/min
Pressure drop at max. flow rate	48	kPa
Minimum operating pressure	1.5	Bar
Maximum operating pressure	6	bar
Maximum operating temperature	75	°C
Min. supply temperature	65	°C
Min. return temperature	60	°C


Connection of supply and return

A&B: Flow

C&D: Return flow

Hydronic integration into the heating system

^[1] Storage capacity measured from a charge level > 65 °C to an outlet temperature < 40 °C.

^[2] Calculated at an average storage temperature of 60 $^{\circ}$ C and an ambient temperature of 15 $^{\circ}$ C